Agricultural Transformation and Labor Mobility During the ARIP Period in Turkey: Evidence from Micro-data, 2000-2002

Hüseyin İkizler
Department of Economics
Bilkent University
Joint work with İnsan TUNALI, Koç University

We study a period during which ARIP (Agricultural Reform Implementation Project) was in effect.

Figure 1: Employment by sectors

Source: HLFS database, TURKSTAT (2011)
Detailed study of the Labor Market consequences of ARIP: Illkkaracan and Tunalı, "Agricultural Transformation and the Rural Labor Market in Turkey." Ch. 7 in Rethinking Structural Reform in Turkish Agriculture: Beyond the World Bank's Strategy, edited by Barış Karapınar, Fikret Adaman, and Gökhan Özertan. Hampshire: NOVA, 2010.

Putting things in perspective:

There was a major crisis in 2001. Ag Employment actually rose in 2001, and then declined until the next crisis in 2008.

Table 1: Share of different sectors in total employment

	$\mathbf{2 0 0 0}$		$\mathbf{2 0 0 1}$		$\mathbf{2 0 0 2}$	
Employment						
Agriculture	7,458	(30.9%)	8,089	(33.7%)	7,769	(32.6%)
Manufacturing	3,954	(16.4%)	3,775	(15.7%)	3,811	(16.0%)
Construction	3,731	(15.5%)	3,582	(14.9%)	3,638	(15.2%)
Services	8,984	(37.2%)	8,551	(35.7%)	8,638	(36.2%)
Total	24,127	(100%)	23,997	(100%)	23,856	(100%)

Source: HLFS database, TURKSTAT (2011)

The aim of our paper:

Study intersectoral flows at a time when the agricultural transformation was enhanced.

Key finding: There is substantial mobility between Agricultural and Nonagricultural employment.

We rescale our estimates so that we can quantify the mobility.
Reference working age population: 27.1 million.
Reference Agricultural employment: 8.1 million (30\%).
Rate of mobility:
Each year:
230,000 individuals move from AG to NAG; 160,000 individuals move from NAG to AG.

What we do:

We use the short panel component of HLFS 2000-2.
Problem: There is attrition and substitution.
Attrition:
An individual who is present at round t is missing at round $t+1$.
Substitution:
An individual who is missing at round t returns at round $t+1$.
We use the RAN model to correct for attrition and substitution.
Tunalı, Ekinci and Yavuzoğlu, "Rescaled Additively Nonignorable Model of Attrition:
A Convenient Semi-Parametric Bias-Correction Framework for Data with a Short Panel Component." Revised, September 2011, 15 pp.

Consequences of attrition and substitution:

Consider a two-round panel and let
$y_{i j}=$ labor market state of individual i at round $j, j=1,2$;
$x_{i}=$ fixed characteristics of individual i;
$D_{i}=1$ if individual is present at both rounds, 0 else.
Object of interest:
$f\left(y_{1}, y_{2} \mid x\right)$, the joint distribution of labor market states, conditional on x.
We observe: $f\left(y_{1}, y_{2} \mid x, D=1\right)$.
In general: $\quad f\left(y_{1}, y_{2} \mid x, D=1\right) \neq f\left(y_{1}, y_{2} \mid x\right)$.
It can be shown that:
(key equation) $\quad f\left(y_{1}, y_{2} \mid x\right)=w\left(y_{1}, y_{2} \mid x\right) f\left(y_{1}, y_{2} \mid D=1, x\right)$.

We express the reflation factors $w\left(y_{1}, y_{2} \mid x\right)$ as a function of y_{1}, y_{2}.
Identifying information comes from marginals published by TURKSTAT:
(12) $\quad \sum_{y_{2}} f\left(y_{1}, y_{2} \mid x\right)=\sum_{y_{2}} w\left(y_{1}, y_{2} \mid x\right) f\left(y_{1}, y_{2} \mid D=1, x\right)=f_{1}\left(y_{1} \mid x\right)$
(13) $\quad \sum_{y_{1}} f\left(y_{1}, y_{2} \mid x\right)=\sum_{y_{1}} w\left(y_{1}, y_{2} \mid x\right) f\left(y_{1}, y_{2} \mid D=1, x\right)=f_{2}\left(y_{2} \mid x\right)$

We specify $w\left(y_{1}, y_{2} \mid x\right)$ additively so that we end up with a just-identifed model.

We use MATLAB to solve the equation system.
We rely on bootstrap methods for inference.

$$
\begin{aligned}
& w\left(y_{1}, y_{2} \mid x\right)=1 \text { "no bias" } \\
& w\left(y_{1}, y_{2} \mid x\right)>1 \text { "downward bias" or "under-represented" in BP } \\
& w\left(y_{1}, y_{2} \mid x\right)<1 \text { "upward bias" or "over-represented" in BP }
\end{aligned}
$$

Example: Let y_{j} denote Labor Market State in period j, w/ values

$$
y=0(N P), y=1 \text { (employed in AG), } y=2 \text { (employed in NAG), } y=3 \text { (UNEMP). }
$$

We introduce 6 indicators:

$$
\begin{aligned}
& z_{1 t}= \begin{cases}1, & \text { employed in agriculture }\left(y_{t}=1\right) \\
0, & \text { otherwise }\end{cases} \\
& z_{2 t}= \begin{cases}1, & \text { employed in non - agriculture }\left(y_{t}=2\right) \\
0, & \text { otherwise }\end{cases} \\
& z_{3 t}= \begin{cases}1, & \text { unemployed }\left(y_{t}=3\right) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

We treat non-participation in both periods as the reference category, and introduce the linear reflation function:

$$
w\left(z_{1 j}, z_{2 j}\right)=\vartheta_{0}+\vartheta_{1} z_{11}+\vartheta_{2} z_{12}+\vartheta_{3} z_{21}+\vartheta_{4} z_{22}+\vartheta_{5} z_{31}+\vartheta_{6} z_{32}
$$

The reflation function captures the propensity to remain in the balanced panel as a function of the labor market states occupied in periods 1 and 2.

Tabular representation of the 4×4 problem:

DATA:

$P_{y 1, y 2}=f\left(y_{1}, y_{2} \mid D=1\right)$, fractions in the balanced panel.
$f_{1}\left(y_{1}\right)$ and $f_{2}\left(y_{2}\right)$, "unbiased" marginals (published by TURKSAT).

	$y_{2}=0$	$y_{2}=1$	$y_{2}=2$	$y_{2}=3$	
$y_{1}=0$	$\vartheta_{0} P_{00}$	$\left(\vartheta_{0}+\vartheta_{2}\right) P_{01}$	$\left(\vartheta_{0}+\vartheta_{4}\right) P_{02}$	$\left(\vartheta_{0}+\vartheta_{6}\right) P_{03}$	$f_{1}(0)$
$y_{1}=1$	$\left(\vartheta_{0}+\vartheta_{1}\right) P_{10}$	$\left(\vartheta_{0}+\vartheta_{1}+\vartheta_{2}\right) P_{11}$	$\left(\vartheta_{0}+\vartheta_{1}+\vartheta_{4}\right) P_{12}$	$\left(\vartheta_{0}+\vartheta_{1}+\vartheta_{6}\right) P_{13}$	$f_{1}(1)$
$y_{1}=2$	$\left(\vartheta_{0}+\vartheta_{3}\right) P_{20}$	$\left(\vartheta_{0}+\vartheta_{3}+\vartheta_{2}\right) P_{21}$	$\left(\vartheta_{0}+\vartheta_{3}+\vartheta_{4}\right) P_{22}$	$\left(\vartheta_{0}+\vartheta_{3}+\vartheta_{6}\right) P_{23}$	$f_{1}(2)$
$y_{1}=3$	$\left(\vartheta_{0}+\vartheta_{5}\right) P_{30}$	$\left(\vartheta_{0}+\vartheta_{5}+\vartheta_{2}\right) P_{31}$	$\left(\vartheta_{0}+\vartheta_{5}+\vartheta_{4}\right) P_{32}$	$\left(\vartheta_{0}+\vartheta_{5}+\vartheta_{6}\right) P_{33}$	$f_{1}(3)$
	$f_{2}(0)$	$f_{2}(1)$	$f_{2}(2)$	$f_{2}(3)$	

Objective: Choose $\Theta=\left\{\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \vartheta_{3}, \vartheta_{4}, \vartheta_{5}, \vartheta_{6}\right\}$ so that row \& column restrictions are met.

In the current paper, we consider 4 labor market states:
0. Non-participation (NP)

1. Agricultural employment (AG)
2. Non-agricultural employment (NAG)
3. Unemployement (UNEMP)

In this case we have 7 equations in $\mathbf{7}$ unknowns.
We repeat the analysis with different x :
All (age 15+)
Males, females
Urban males, rural males
Urban females, rural females

Analysis of Reflation Factors -- All
8 Annual Transitions between 2000-2002

	Table R1. All (Age 15+)				Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
$\begin{aligned} & \text { t } \\ & \text { O } \\ & \text { d } \end{aligned}$		Inflate	>10\%	Severe	0	6	0	2
	(NP)	by	<10\%	Mild	0	1	1	4
	0	Deflate	s 10%	Mild	0	1	4	1
		by	>10\%	Severe	8	0	3	1
	(AG)	Inflate	>10\%	Severe	7	8	8	8
		by	$\leq 10 \%$	Mild	1	0	0	0
	1	Deflate	s10\%	Mild	0	0	0	0
		by	>10\%	Severe	0	0	0	0
		Inflate	>10\%	Severe	0	6	0	3
		by	s10\%	Mild	0	1	0	4
	2	Deflate	s10\%	Mild	3	1	8	0
		by	>10\%	Severe	5	0	0	1
		Inflate	>10\%	Severe	1	7	5	7
		by	s10\%	Mild	6	1	3	1
	3	Deflate	s10\%	Mild	1	0	0	0
		by	>10\%	Severe	0	0	0	0

Analysis of Reflation Factors -- Males

8 Annual Transitions between 2000-2002

Table R2. Male (Age 15+)					Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
		Inflate	>10\%	Severe	0	6	0	2
		by	<10\%	Mild	0	0	0	4
	0	Deflate	s10\%	Mild	7	1	4	0
		by	>10\%	Severe	1	1	4	2
		Inflate	>10\%	Severe	7	8	7	8
		by	<10\%	Mild	1	0	1	0
	1	Deflate	s10\%	Mild	0	0	0	0
		by	>10\%	Severe	0	0	0	0
		Inflate	>10\%	Severe	0	5	0	3
		by	s10\%	Mild	0	1	0	3
	2	Deflate	s10\%	Mild	4	1	4	0
		by	>10\%	Severe	4	1	4	2
		Inflate	>10\%	Severe	5	7	6	8
		by	క10\%	Mild	3	0	2	0
	3	Deflate	s10\%	Mild	0	0	0	0
		by	>10\%	Severe	0	1	0	0

Analysis of Reflation Factors -- Females

8 Annual Transitions between 2000-2002

Table R3. Female (Age 15+)					Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
$\begin{aligned} & \text { + } \\ & \stackrel{0}{む} \\ & 0 \end{aligned}$	(NP)	Inflate >10\% Severe			0	8	0	1
		by	<10\%	Mild	0	0	2	5
	0	Deflate	s10\%	Mild	3	0	3	2
		by	>10\%	Severe	5	0	3	0
		Inflate	>10\%	Severe	6	8	6	8
		by	<10\%	Mild	1	0	1	0
	1	Deflate	s10\%	Mild	0	0	0	0
		by	>10\%	Severe	1	0	1	0
		Inflate	>10\%	Severe	1	8	0	3
	(NAG)	by	s10\%	Mild	2	0	6	3
	2	Deflate	510\%	Mild	0	0	0	1
		by	>10\%	Severe	5	0	2	1
		Inflate	>10\%	Severe	2	8	4	6
	(UNEMP)	by	<10\%	Mild	3	0	2	0
	3	Deflate	s10\%	Mild	0	0	1	0
		by	>10\%	Severe	3	0	1	2

Analysis of Reflation Factors - Urban Males
8 Annual Transitions between 2000-2002

Table R4. Urban Male (Age 15+)					Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate >10\% Severe			0	0	0	3
		by	<10\%	Mild	0	0	0	4
	0	Deflate	<10\%	Mild	3	5	2	0
		by	>10\%	Severe	5	3	6	1
		Inflate	>10\%	Severe	2	0	2	5
	(AG)	by	<10\%	Mild	0	0	0	1
	1	Deflate	S10\%	Mild	3	5	4	1
		by	>10\%	Severe	3	3	2	1
		Inflate	>10\%	Severe	0	0	0	6
		by	s10\%	Mild	4	4	8	2
	2	Deflate	510\%	Mild	0	2	0	0
		by	>10\%	Severe	4	2	0	0
		Inflate	>10\%	Severe	7	5	8	8
		by	$\leq 10 \%$	Mild	1	2	0	0
	3	Deflate	s10\%	Mild	0	0	0	0
		by	>10\%	Severe	0	1	0	0

Analysis of Reflation Factors - Rural Males

8 Annual Transitions between 2000-2002

Table R5. Rural Male (Age 15+)					Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate >10\% Severe			0	1	4	5
		by	<10\%	Mild	0	2	2	1
	0	Deflate	<10\%	Mild	4	2	2	0
		by	>10\%	Severe	4	3	0	2
		Inflate	>10\%	Severe	3	4	5	6
		by	<10\%	Mild	1	3	0	2
	1	Deflate	<10\%	Mild	1	0	2	0
		by	>10\%	Severe	3	1	1	0
		Inflate	>10\%	Severe	2	2	1	2
		by	<10\%	Mild	1	1	1	6
	2	Deflate	s10\%	Mild	5	5	4	0
		by	>10\%	Severe	0	0	2	0
		Inflate	>10\%	Severe	6	6	7	8
	(UNEMP)	by	<10\%	Mild	1	1	1	0
	3	Deflate	<10\%	Mild	1	1	0	0
		by	>10\%	Severe	0	0	0	0

Analysis of Reflation Factors - Urban Females

8 Annual Transitions between 2000-2002

Table R6. Urban Female (Age 15+)					Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate >10\% Severe			0	1	2	6
		by	<10\%	Mild	0	1	3	0
	0	Deflate	s10\%	Mild	0	3	1	1
		by	>10\%	Severe	8	3	2	1
		Inflate	>10\%	Severe	1	0	3	4
		by	<10\%	Mild	1	4	1	2
	1	Deflate	s10\%	Mild	4	4	3	1
		by	>10\%	Severe	2	0	1	1
		Inflate	>10\%	Severe	5	5	8	7
		by	<10\%	Mild	3	2	0	0
	2	Deflate	s10\%	Mild	0	0	0	1
		by	>10\%	Severe	0	1	0	0
		Inflate	>10\%	Severe	5	5	6	7
	(UNEMP)	by	$\leq 10 \%$	Mild	3	2	1	1
	3	Deflate	S10\%	Mild	0	0	0	0
		by	>10\%	Severe	0	1	1	0

Analysis of Reflation Factors - Rural Females

8 Annual Transitions between 2000-2002

Table R7. Rural Female (Age 15+)					Period t+1			
					(NP)	(AG)	(NAG)	(UNEMP)
					0	1	2	3
	(NP)	Inflate >10\% Severe			0	5	0	1
		by	<10\%	Mild	0	1	5	4
	0	Deflate	s10\%	Mild	2	0	2	2
		by	>10\%	Severe	6	2	1	1
		Inflate	>10\%	Severe	0	4	3	2
		by	<10\%	Mild	3	3	1	1
	1	Deflate	S10\%	Mild	2	0	2	4
		by	>10\%	Severe	3	1	2	1
		Inflate	>10\%	Severe	2	4	1	3
		by	<10\%	Mild	0	1	3	1
	2	Deflate	510\%	Mild	3	0	1	3
		by	>10\%	Severe	3	3	3	1
		Inflate	>10\%	Severe	6	6	7	6
	(UNEMP)	by	<10\%	Mild	1	1	0	0
	3	Deflate	S10\%	Mild	1	1	0	2
		by	>10\%	Severe	0	0	1	0

Dominant bias patterns in the Balance Panel (6-8 cells have same sign)

| From | Into | All | M | | F | | Ur M | Ru-M | Ur-F | | Ru-F | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NP | NP | | + | | + | | + | | + | | + | | + | | + |
| | AG | - | | - | | - | | | + | | | | + | - | |
| | NAG | | + | | + | | + | | + | - | | | | | |
| | UNE | - | | | | - | | - | | - | | - | | | |
| AG | NP | - | | - | | - | | | + | | | | + | | |
| | AG | - | | - | | - | | | + | - | | | | - | |
| | NAG | - | | - | | - | | | + | | | | | | |
| | UNE | - | | - | | - | | - | | - | | - | | | |
| NAG | NP | | + | | + | | | | | | | - | | | + |
| | AG | - | | - | | - | | | | | | - | | | |
| | NAG | | + | | + | - | | - | | | + | - | | | |
| | UNE | - | | - | | - | | - | | - | | - | | | |
| UNE | NP | - | | - | | - | | - | | - | | - | | - | |
| | AG | - | | - | | - | | - | | - | | - | | - | |
| | NAG | - | | - | | - | | - | | - | | - | | - | |
| | UNE | - | | - | | - | | - | | - | | - | | - | |

Summary of dominant bias patterns in the BP:

ALL/M/F: Transitions into/out of UNEMP are under-represented; ... AG are under-represented.

ALL/M/F: Transitions from AG to NAG are under-represented; ... from NAG to AG are under-represented.

ALL/M/F: Transitions from NP to NP, NAG are over-represented; ... from NAG to NP, NAG are over-represented.

Variations emerge when broken down by location as well as sex.

One pattern is extremely consistent:
Transitions into/out of UNEMP are under-represented.

Annual Forward Transitions, All (15+)

Share	From 1 nto	NP	AG	NAG	UNEMP	Row sum
0.5	NP	84	6	7	3	100
0.17	AG	21	73	5	2	101
0.29	NAG	13	2	79	6	100
0.04	UNEMP	30	5	37	28	100

Inflate to a fictional population of size 2,710

Expand by	From\} \nto	NP	AG	NAG	UNEMP	Row sum
13.6	NP	1142	82	95	41	1360
4.6	AG	97	336	23	9	460
7.9	NAG	103	16	624	47	790
1	UNEMP	30	5	37	28	100

Inflate to a reference population of size $\mathbf{2 7 . 1}$ million
(2000-02 average was 24.6 million)
($\times 10,000$)

Expand by	From Into	NP	AG	NAG	UNEMP	Row sum
10000	NP	1142	82	95	41	1360
10000	AG	97	336	23	9	460
10000	NAG	103	16	624	47	790
10000	UNEMP	30	5	37	28	100

Each year:
230,000 individuals moved from AG to NAG;
160,000 individuals moved from NAG to AG.
Note:
Ag employment was around 7.5-8.1 million between 2000-2.
Ag employment for our reference population would be around 8.3-9 million.

Gender differences are considerable!

Annual forward transitions

Male (Age 15+)			Period t+1			
			(NP)	(AG)	(NAG)	(UNEMP)
Mean of TUIK marginals			0	1	2	3
+을응	. 2662208	$\begin{gathered} (N P) \\ 0 \end{gathered}$	74	7	13	6
	. 1876217	$\begin{gathered} \text { (AG) } \\ 1 \end{gathered}$	14	75	8	3
	. 4903384	$\begin{gathered} \text { (NAG) } \\ 2 \end{gathered}$	9	2	82	7
	. 0558192	$\begin{gathered} \text { (UNEMP) } \\ 3 \end{gathered}$	21	6	44	29

Annual forward transitions

Female (Age 15+)			Period t+1			
			(NP)	(AG)	(NAG)	(UNEMP)
Mean of TUIK marginals			0	1	2	3
$\begin{aligned} & \text { to } \\ & \text { O} \\ & \frac{0}{0} \end{aligned}$. 7333045	$\begin{gathered} (N P) \\ 0 \end{gathered}$	89	6	3	2
	. 1539729	$\begin{gathered} \text { (AG) } \\ 1 \end{gathered}$	27	71	1	1
	. 0943301	$\begin{gathered} \text { (NAG) } \\ 2 \end{gathered}$	24	2	70	4
	. 0183925	$\begin{gathered} \text { (UNEMP) } \\ 3 \end{gathered}$	44	3	22	31

Comparisons of Weighted and Unweighted Model Estimates

$\begin{gathered} \text { FROM } \\ \text { AG } \end{gathered}$	Mlogit Estimates			Weighted Mlogit Estimates		
	NP	NAG	UNEMP	NP	NAG	UNEMP
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
Period Dummies: (Ref. Q1 and year 2000)						
Q2	-0.373***	-0.022	$-0.200^{* *}$	-0.333***	-0.004	-0.165
Q3	$-0.277 * * *$	-0.078**	0.002	-0.265***	-0.060*	0.038
Q4	-0.109***	-0.031	0.124***	-0.100***	-0.012	0.149***
year_2001	-0.035	0.024	0.217*	0.051	0.297***	0.308**

$\begin{aligned} & \text { FROM } \\ & \text { NAG } \end{aligned}$	Mlogit Estimates			Weighted Mlogit Estimates		
	NP	AG	UNEMP	NP	AG	UNEMP
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
Period Dummies: (Ref. Q1 and year 2000)						
Q2	-0.081***	0.188	0.014**	-0.075***	0.200	0.039
Q3	-0.080***	0.095**	-0.021	-0.072***	0.092*	0.021
Q4	-0.045***	0.069	0.016***	-0.052***	0.061	$0.038 * * *$
year_2001	-0.040	-0.163	0.198*	-0.125	-0.349***	0.227**

Comparisons of Weighted and Unweighted Model Estimates (Continued)

$\begin{gathered} \text { FROM } \\ \text { AG } \end{gathered}$	Mlogit Estimates			Weighted Mlogit Estimates		
	NP	NAG	UNEMP	NP	NAG	UNEMP
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
Period Dummies: (Ref. Q1 and year_2000)						
Q2	-0.047**	-0.100	0.050	-0.053**	-0.135	0.065
Q3	0.239***	0.048	0.273***	0.295***	0.101***	$0.301 * * *$
Q4	0.241***	-0.029**	$0.245 * * *$	0.237***	-0.024*	0.232***
year_2001	$0.122 * * *$	-0.218	0.660***	0.170*	-0.021**	0.627***
year_2002	-0.119	-0.207*	0.508***	-0.063**	0.060	0.550***

$\begin{aligned} & \text { FROM } \\ & \text { NAG } \end{aligned}$	Mlogit Estimates			Weighted Mlogit Estimates		
	NP	AG	UNEMP	NP	AG	UNEMP
	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient	Coefficient
Period Dummies: (Ref. Q1 and year 2000)						
Q2	0.042**	-0.006	-0.020	0.041**	0.015	0.025
Q3	0.058***	-0.044	0.078***	0.072***	-0.084***	0.079***
Q4	0.073***	-0.055**	0.097***	0.071***	-0.053*	0.103***
year_2001	0.095***	-0.018	0.469***	0.058*	-0.199**	$0.415 * * *$
year_2002	0.007	0.147*	$0.483 * * *$	-0.093**	-0.112	$0.423 * * *$

The individual determinants of transitions

FROM AG	NP		NAG		UNEMP	
	Coefficient	Robust Std. Err.	Coefficient	Robust Std. Err.	Coefficient	Robust Std. Err.
Residential Area: (Ref. urban male)						
rural_male	-0.874***	0.068	-1.181***	0.086	-1.563***	0.139
urban_female	1.379***	0.084	-1.558	0.190	$-1.670^{* * *}$	0.284
rural_female	0.010***	0.069	-3.356***	0.155	$-3.319 * * *$	0.204

Age Groups: (Ref. age 15_24)

age_2534	$-0.300 * * *$	0.065	0.289	0.141	$-0.074^{* *}$	0.183
age_3544	$-0.462 * * *$	0.070	0.444	0.152	$-0.645 * * *$	0.216
age_4554	$-0.432 * * *$	0.072	-0.059	0.159	$-1.409 * * *$	0.248
age_5564	$-0.045 * * *$	0.075	$-0.567 * * *$	0.185	$-1.946 * * *$	0.320
age_65over	$0.675 * * *$	0.080	-1.350	0.258	$-3.292 * * *$	0.611

Education Levels: (Ref. primary5)

illit	$0.162 * * *$	0.043	$-0.238 * * *$	0.135	$0.839 * * *$	0.176
lit	$0.043 * * *$	0.066	$-0.444 * * *$	0.174	$0.050 * *$	0.294
primary8	0.947	0.173	-0.126	0.446	$-1.766 * *$	1.004
midall	0.445	0.080	$0.161 * * *$	0.126	$-0.175 * * *$	0.233
highgen	$0.011 * * *$	0.111	$-0.043 * * *$	0.163	$0.065 * * *$	0.237
highvoc	$0.155 * * *$	0.157	$0.439 * * *$	0.212	$0.639 * * *$	0.264
univ4plus	$-0.535 * * *$	0.425	$1.018 * * *$	0.334	$0.509 * * *$	0.594
univoc	$-0.153 * * *$	0.575	$0.837 * * *$	0.465	$2.057 * * *$	0.492

The individual determinants of transitions (Continued)

FROM NAG	NP		AG		UNEMP	
	Coefficient	Robust Std. Err.	Coefficient	Robust Std. Err.	Coefficient	Robust Std. Err.
Residential Area: (Ref. urban male)						
rural_male	-0.083***	0.052	2.740***	0.079	-0.158***	0.062
urban_female	1.462***	0.040	0.157	0.172	-0.250 ***	0.059
rural_female	1.201***	0.090	$2.855 * * *$	0.143	-0.901***	0.203

Age Groups: (Ref. age 15_24)											
age_2534	$-0.653 * * *$	0.050	-0.136	0.144	$-0.214^{* *}$	0.065					
age_3544	$-0.759 * * *$	0.058	-0.083	0.155	$-0.510^{* * *}$	0.076					
age_4554	$0.267 * * *$	0.058	-0.001	0.166	$-0.724^{* * *}$	0.089					
age_5564	$1.081 * * *$	0.070	$0.596 * * *$	0.191	$-0.769 * * *$	0.137					
age_65over	$1.418 * * *$	0.099	0.523	0.277	$-2.276 * * *$	0.457					

Education Levels: (Ref. primary5)

Edil	$0.409 * * *$	0.078	$0.768 * * *$	0.156	$0.478 * * *$	0.119
illit	$0.209 * * *$	0.087	$0.412 * * *$	0.187	$0.375^{* *}$	0.124
lit	1.288	0.166	0.438	0.433	$-0.262 * *$	0.287
primary8	-0.115	0.046	$-0.642 * * *$	0.116	$-0.354 * * *$	0.058
midall	$-0.436 * * *$	0.047	$-1.038^{* * *}$	0.138	$-0.674 * * *$	0.060
highgen	$-0.542 * * *$	0.058	$-0.879 * * *$	0.156	$-0.706 * * *$	0.073
highvoc	$-1.205 * * *$	0.066	$-1.603 * * *$	0.220	$-1.375 * * *$	0.099
univ4plus	$-1.200 * * *$	0.105	$-1.267 * * *$	0.300	$-1.144 * * *$	0.147
univoc						

